
SCUBA: Secure Code Update By Attestation in Sensor
Networks∗

Arvind Seshadri† Mark Luk‡ Adrian Perrig§ Leendert van Doorn¶ Pradeep Khosla‖
CMU/CyLab CMU/CyLab CMU/CyLab IBM CMU/CyLab

ABSTRACT
This paper presents SCUBA (Secure Code Update By Attestation),
for detecting and recovering compromised nodes in sensor net-
works. The SCUBA protocol enables the design of a sensor net-
work that can detect compromised nodes without false negatives,
and either repair them through code updates, or revoke the com-
promised nodes. The SCUBA protocol represents a promising ap-
proach for designing secure sensor networks by proposing a first
approach for automatic recovery of compromised sensor nodes.
The SCUBA protocol is based on ICE (Indisputable Code Execu-
tion), a primitive we introduce to dynamically establish a trusted
code base on a remote, untrusted sensor node.
Categories and Subject Descriptors: Software, Operating Sys-
tems, Security and Protection.
General Terms: Security.
Keywords: Externally-verifiable Code Execution, Software-based
Attestation, Secure Code Update, Self-checksumming Code.

1. INTRODUCTION
Sensor networks are expected to be deployed in the near future

in many safety-critical applications such as critical infrastructure
protection and surveillance, alarm systems, home and office au-
tomation, inventory control systems, and many medical applica-
tions such as patient monitoring. Hence, if an attacker injects mali-
cious code into the sensor nodes, it can compromise the safety and
privacy of users.

We consider the setting of a sensor network where an attacker
has compromised sensor nodes by injecting malicious code into
their memory. The base station wants to verify the code memory
contents of the nodes, and either repair the nodes by undoing any
∗This research was supported in part by CyLab at Carnegie Mellon under grant
DAAD19-02-1-0389 from the Army Research Office, and grant CNS-0347807 from
the National Science Foundation, and by a gift from Bosch and IBM. The views and
conclusions contained here are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either express or im-
plied, of ARO, Bosch, Carnegie Mellon University, IBM, NSF, or the U.S. Govern-
ment or any of its agencies.
†arvinds@cs.cmu.edu
‡mark.luk@gmail.com
§perrig@cmu.edu
¶T.J. Watson Research Center, leendert@us.ibm.com
‖pkk@ece.cmu.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSe’06, September 29, 2006, Los Angeles, California, USA.
Copyright 2006 ACM 1-59593-557-6/06/0009 ...$5.00.

changes made by the attacker or blacklist the nodes which cannot
be repaired.

This paper presents the SCUBA (Secure Code Update By At-
testation) protocol, which enables the base station to perform code
updates to sensor nodes. The protocol assumes that the update has
to be performed in the presence of malicious code that might try to
interfere with the update. For example, if the base station sends a
code patch, malicious code on the node may fake the installation
of the patch. To make the problem tractable, we assume that the
attacker’s hardware devices are not present in the sensor network
for the duration of the repair process. Even with this assumption,
our protocol represents a significant benefit since circumventing it
requires the attacker’s hardware to be always present in the sensor
network. This significantly increases the attacker’s exposure com-
pared to the situation today where the attacker need only be physi-
cally present intermittently in order to compromise sensor nodes.

To the best of our knowledge, we present the first protocol for
secure code updates to recover from node compromise in sensor
networks. The base station, which sends the code update, obtains
a firm guarantee either that the code update was correctly installed
(thereby undoing all changes made by the attacker) or that the mali-
cious code running on the sensor node is preventing the application
of the code update. In the latter case, the base station can blacklist
the sensor node. We assume commodity sensor nodes (i.e., no spe-
cial hardware required). The SCUBA protocol can recover nodes
even if an attacker compromises an arbitrary number of nodes, up-
loads arbitrary code into the compromised nodes, and if compro-
mised nodes arbitrarily collude.

In order to securely perform the code update, the base station
needs to obtain a guarantee that no malicious code will interfere
with the execution of the SCUBA protocol on the sensor node. The
Pioneer primitive can be used to obtain this guarantee [20]. Pioneer,
which is implemented for the x86 architecture, allows an external
verifier to obtain the guarantee of untampered code execution on an
untrusted computing platform. That is, the external verifier obtains
an assurance that no malicious code present on the untrusted com-
puting platform can interfere with the execution of some arbitrary
executable that the verifier wants to invoke on the untrusted com-
puting platform. We port the Pioneer primitive to the TI MSP430,
the CPU used on the Telos rev.B sensor nodes [16]. We call our
primitive for the MSP430 CPU ICE (Indisputable Code Execution)
since it enables the base station (the external verifier) to obtain an
indisputable guarantee that the SCUBA protocol executable on the
sensor node (the untrusted computing platform) will execute un-
tampered.

The base station commands the sensor node to invoke the ICE
verification function, which sets up an execution environment for
untampered execution of the SCUBA protocol executable. The ICE
verification function is constructed so that any attempt by the at-
tacker to fake the creation of the correct execution environment will
be detected by the base station. When the base station does not de-
tect any such attempt, it is assured that the SCUBA protocol code
will execute on the node without interference from malicious code.

85

The base station then sends a code update to the SCUBA protocol
on the node, which installs the code update thereby removing the
changes made by the attacker.
Outline In Section 2, we describe the problem definition, the sen-
sor network architecture, and assumptions, and the attacker model.
Section 3 discusses prior research in the areas of untampered code
execution and software-based attestation. Section 4 describes the
ICE primitive. In Section 5, we describe the SCUBA protocol.
Section 6 discusses related work, and Section 7 concludes.

2. PROBLEM DEFINITION, ATTACKER
MODEL, AND ASSUMPTIONS

In this section, we first define our problem in the context of sen-
sor networks. We then discuss our attacker model. Finally, we state
our assumptions about the sensor network, the base station and the
sensor nodes.

2.1 Problem Definition
We consider the setting of a sensor network where an attacker

has compromised sensor nodes by injecting malicious code into
their memory. The base station wants to verify the code memory
contents of the nodes, and either repair the nodes by undoing any
changes made by the attacker or blacklist the nodes which cannot
be repaired. The repair needs to be done in the presence of mali-
cious code that may interfere with the repair.

2.2 Attacker Model
In this paper, we study an attacker who compromises sensor

nodes by injection of malicious code. Malicious nodes controlled
by the attacker can collude. We assume that the attacker’s hardware
devices are not present in the sensor network for the duration of
the repair process. While this is a strong assumption, the SCUBA
protocol represents a significant advance since circumventing it re-
quires the attacker’s hardware to be always present in the sensor
network. This significantly increases the attacker’s exposure com-
pared to the situation today where the attacker need only be phys-
ically present intermittently in order to compromise sensor nodes.
In our future work, we will consider an attacker who is present at
the sensor network, allowing it to introduce its own malicious and
computationally powerful devices.

2.3 Sensor Network Architecture
We consider a wireless sensor network consisting of one or mul-

tiple base stations and several sensor nodes. All sensor nodes have
have the same make and model of CPU and identical memories.
The sensor nodes communicate among themselves and the base
station using a wireless network. Every sensor node and the base
station has a unique identifier, hereafter referred to as node ID or
base station ID. The communication between the base station and
sensor nodes can be single-hop or multi-hop.

The base station is the gateway between the sensor network and
the outside world. Sensor nodes can send and receive packets to
hosts on external networks only through the base station.

2.4 Assumptions
The base station knows the make and model of the CPU on the

sensor nodes. To authenticate messages between sensor nodes and
the base station, we assume, for simplicity, that a public-key in-
frastructure is set up, where each sensor node knows the authentic
public key of the base station (we assume that the base station is
the Certification Authority (CA) of the network). Malan et al. have
recently shown that public-key cryptography takes on the order of
tens of seconds on current sensor nodes [15], which is justifiable
for a small number of operations. We could also assume pairwise
shared keys between the base station and sensor nodes, and use the
SPINS infrastructure to set up additional keys [18]. We assume that
the base station is not compromised by the attacker. This assump-

tion is commonly made in secure sensor networks, since compro-
mise of the base station implies compromise of the entire network.

We assume that the base station and sensor nodes share a cryp-
tographic key. However, when the attacker compromises a node,
it could learn the node’s key. Therefore, as part of undoing the
changes made by the attacker, the base station also needs to estab-
lish a new key with the node. The issue is one of key establishment:
how can we establish a key between the base station and a node
without relying the pre-existence of shared secrets between them?
The untampered code execution mechanism provided by ICE can
be used to perform this task. We do not give the details here since
it is out of the scope of this paper. A preliminary version of our
protocol for key establishment based on ICE is available [2]. A
forthcoming paper discusses a better version of the protocol.

We also assume that each sensor node has a few bytes of Read-
Only Memory (ROM). The ROM stores the node ID of the sensor
node and base station’s public key. By keeping a sensor node’s
node ID in the ROM, the attacker cannot modify the memory re-
gion containing the node ID even after it compromises the sensor
node. The ICE verification function uses the sensor node’s node
ID as part of the input used to generate the checksum. By doing
so, we leverage ICE to prevent impersonation attacks where an at-
tacker changes the node ID of a node to impersonate another node,
for example as in the Sybil attack [5]. We discuss our defense in
detail in Section 4.3. The base station’s public key is used by the
sensor nodes to authenticate packets from the base station. Stor-
ing the base station’s public key in ROM prevents an attacker from
changing that key in compromised nodes.

The sensor network is assumed to provide a reliable transport
layer protocol like PSFQ [23]. The SCUBA protocol requires that
protocol messages be reliably delivered between participants.

3. BACKGROUND
In this section, we discuss prior research in the areas of software-

based untampered code execution, and software-based attestation.
We focus on software-based techniques because sensor nodes are
unlikely to have hardware extensions for attestation or untampered
code execution due to cost, size, and power concerns.

Pioneer is the first software-based technique that provides the
guarantee of untampered code execution, the property that we need
to perform secure code updates on compromised sensor nodes [20].
However, Pioneer relies on hardware-dependent techniques spe-
cific to the Pentium platform, and thus cannot be used on the CPU
of sensor nodes. ICE is the only software-based primitive that we
are aware of which achieves untampered code execution on simple
CPU architectures.

An area that is closely related to untampered code execution is
that of software-based attestation. Attestation enables a verifier to
check the integrity of software present on a computing platform.
However, attestation by itself cannot guarantee untampered code
execution since the attacker can modify the code between the time
the code is verified and the time the code is invoked for execution.
This is referred to as a time-of-check-to-time-of-use (TOCTTOU)
attack. Hence, none of the techniques we discuss below can be used
to address the problem of secure code updates on compromised
sensor nodes.

Spinellis proposed using self-verifying code as a means to ver-
ify software integrity [6]. The work uses the setting of an external
verifier that wants to verify the integrity of some piece of code on
a device. The external verifier asks the device the split the mem-
ory region being verified into two overlapping regions. The start
and end addresses of these two regions differ from one verifica-
tion request to another. The device generates a hash of each region
separately and returns the hashes to the verifier. Since the memory
regions that are hashed vary from verification to verification, the at-
tacker cannot pre-compute or replay the hash values. The external
verifier has a copy of the code being verified and can hence check
the correctness of the hashes returned by the device. Spinellis also

86

proposes using CPU state such as the behavior of caches or per-
formance counters as inputs to the checksum to detect attempts by
the attacker to modify the hash computation in order to forge the
correct hash values.

Kennell and Jamieson propose a system, Genuinity, that uses
ideas similar to those of Spinellis in the context of the x86 archi-
tecture [11]. The main difference between the two works is that
Genuinity adds the use of time as a side channel to detect cheating
by the attacker.

SWATT is a software-based memory attestation technique that
allows an external verifier to perform an equality check on the
memory contents of an embedded device [19]. SWATT is targeted
towards simple CPUs and uses the idea to pseudorandom memory
traversal and uses time as a side channel to detect attempts by the
attacker to manipulate the verification process. The setting of ICE
is similar to that of SWATT [19]. However, as we mentioned earlie,
SWATT can only provide a guarantee of memory content integrity,
unlike ICE which provides the stronger guarantee of untampered
code execution. Also, unlike ICE, SWATT needs to check the en-
tire memory contents of the device. Checking the entire memory
contents of a device might be impractical since part of the device’s
memory might have contents that are unknown to the verifier (e.g.,
dynamic data or cryptographic secrets). The ability to check mem-
ory sizes smaller than the entire memory of the device also reduces
the energy consumed by ICE to perform the verification of memory
when compared to SWATT.

PIV is a technique to perform program integrity checks on sen-
sor nodes [22]. The primary idea is that the verifier creates a new
randomized hash function for each verification request and sends
the hash function to the sensor node along with the verification re-
quest. However, PIV does not time the hash computation on the
sensor node, and could be vulnerable to dynamic attacks where
the attacker manipulates the execution of the hash function on the
sensor node to generate the correct checksum despite having made
modifications to the program running on the sensor node.

Shaneck et al. propose a technique for remote attestation of sen-
sor nodes [17]. The verifier constructs a new attestation procedure
for each verification request and sends the code to the sensor node
being verified. The attestation procedure uses various code obfus-
cation techniques to make it hard for the attacker to perform static
or dynamic analysis of the attestation procedure within the time
alloted to the sensor node by the base station for computing the at-
testation response. However, the paper does not have any results
to substantiate this claim. Further, the authors state that the base
station should set the expected time for getting a response from a
sensor node to the sum of the network round trip time, the time
taken to compute the attestation procedure on the sensor node, and
the expected delay in response due to factors like network delay. As
long as the base station can determine an upper bound on the ex-
pected delay due to random factors like network jitter, SWATT can
be used in the setting of the paper to perform attestation of sensor
nodes. Also, unlike ICE, the authors do not consider imperson-
ation attacks and they assume that the sensor network is a one-hop
network.

4. ICE: INDISPUTABLE CODE
EXECUTION

In this section, we first give an overview the ICE primitive and
show how we use self-checksumming code to build the ICE veri-
fication function. We then discuss various attacks against the ICE
verification function and show how we design the defences against
them. Finally, we describe our implementation of the ICE verifica-
tion function on the Telos rev.B motes.

4.1 Indisputable Code Execution Overview
We consider the model where the base station wants to invoke

some executable on the sensor node. The sensor node could have

malicious code which may attempt to interfere with the execution.
The base station wants to obtain the guarantee that the execution of
the executable on the sensor node has not been tampered with in
any manner. We refer to this guarantee as untampered code execu-
tion.

The following three step process is one way to achieve untam-
pered code execution. 1) Check the integrity of the executable.
This ensures that the executable has not been modified before it
is invoked for execution. 2) Set up an execution environment in
which the execution of the executable is guaranteed to be atomic.
That is, once it starts executing, no other code on the sensor node
is allowed to execute until the executable exits. We refer to such an
execution environment as an untampered execution environment.
3) Invoke the executable to execute in the untampered execution
environment. It is important that the three steps outlined above be
executed atomically. Otherwise, the attacker can carry out a time-
of-check-to-time-of-use (TOCTTOU) attack. In this attack, the at-
tacker modifies the executable after the integrity check but before
the executable is invoked for execution.

We construct a challenge-response protocol, called ICE (Indis-
putable Code Execution) between the base station and sensor node
to enable the base station to obtain the guarantee of untampered
code execution. The sensor node has a function called the ICE ver-
ification function which carries out the three step process described
in the previous paragraph to ensure that the execution of an arbi-
trary executable on the sensor node will not be tampered by any
malicious code that exists on the sensor node. However, since the
ICE verification function is also a piece of software, malicious code
could tamper with the execution of the ICE verification function.
How do we ensure that the ICE verification function itself executes
untampered?

The ICE verification function is a self-checksumming code. We
define self-checksumming code as a sequence of instructions that
compute a checksum over themselves in a way that the check-
sum would be wrong or the computation would be slower if the
sequence of instructions were modified. This provides us with a
means to verify the integrity of the ICE verification function ex-
ecutable. However, malicious code may attempt to tamper with
the execution of the ICE verification function, even when the exe-
cutable image of the ICE verification function is correct. To prevent
this attack, the ICE verification function sets up an untampered ex-
ecution environment for its execution before it starts to compute the
checksum. This consists of setting up CPU state to ensure atomic
execution of the ICE verification function. An example of setting
CPU state to ensure atomic execution is disabling interrupts. The
ICE verification function takes the CPU state used to set up the un-
tampered execution environment as input to generate the checksum.
The ICE verification function is constructed so that if any part of
the relevant CPU state is incorrect then either the checksum will be
incorrect or the checksum computation would be slower. Thereby,
a correct checksum that is generated within the expected amount
of time guarantees that the ICE verification function will execute
untampered.

Figure 1 shows an overview of ICE. The base station sends a
“check integrity and execute” request to the sensor node. The ICE
verification function on the sensor node computes a checksum as
a function of the memory region containing its own instruction se-
quence, the instruction sequence of the executable, and the CPU
state that needs to be set up to create an untampered execution en-
vironment. The ICE verification function returns the checksum to
the base station and invokes the executable. Since the executable
is directly invoked by the ICE verification function, the executable
“inherits” the untampered execution environment of the ICE verifi-
cation function and hence executes untampered by malicious code.

The base station has a copy of the ICE verification function code
and the executable. It also knows the correct value of the CPU state
necessary to create the untampered execution environment on the
sensor node. Hence, the base station can verify if the checksum re-

87

PSfrag replacements

1. Challenge

2.Com
pute

checksum

3. Checksum

4. Invoke

5. Hash of code
6. Invoke
7. Result (optional)

Base Station Sensor Node

ICEICE

Checksum code
Send function

functionfunction

SCUBASCUBA
protocol protocol

Expected memory layout

Figure 1: Overview of ICE. The numbers represent the tempo-
ral ordering of events.

turned by the sensor node is correct. Since the base station knows
the CPU make and model on the sensor node, it knows the expected
time to compute the checksum on the sensor node. If the base sta-
tion receives the correct checksum from the sensor node within the
expected time, the base station obtains the guarantee of untampered
execution of the executable on the sensor node.

4.2 Attacks Against Self-Checksumming Code
In order to fake the untampered execution of the executable, the

attacker has to fake the correct checksum within the expected time
even though it modifies either the memory region containing the
executable and the ICE verification function, or sets up the CPU
state corresponding to the untampered execution environment in-
correctly. Such attacks can be classified into three types. In the first
type of attack, an attacker attempts to forge the checksum locally
on the sensor node. In the second type of attacks, the adversary at-
tempts to speed up the checksum computation, either locally or by
use helper devices. Finally, in the third type, malicious nodes in a
sensor network may attempt to use impersonation attacks. For ex-
ample, a malicious node may attempt to have an unmodified sensor
node compute the response to the base station’s challenge by for-
warding the base station’s challenge to the unmodified node. Hav-
ing given an overview of ICE in Section 4.1, we now describe how
we design our defenses against these attacks.

4.2.1 Checksum Forgery Attacks
The attacker needs to forge the value despite modifying the mem-

ory contents being checksummed or having an incorrect CPU state
corresponding to the untampered execution environment. The dif-
ferent attacks in this category are as follows:
Pre-computation and replay attacks. An attacker may attempt
to compute the checksum over the memory region containing the
ICE verification function and the target executable, before mak-
ing changes to the memory region. Later, when the verifier asks
the device to compute and return the checksum, the device re-
turns the pre-computed value. To prevent this attack, the verifier
sends the device a random challenge with every verification re-
quest. The checksum computed by the device is a function of this
challenge. The challenge sent by the verifier is sufficiently long to
prevent dictionary attacks when the attacker stores previously ob-
served challenge-checksum pairs.
Data substitution attacks. An attacker may attempt to change
some locations of the memory region containing the ICE verifi-
cation function and the executable and keep the original values at
a different location in memory. When the ICE verification func-
tion tries to read from the memory locations the attacker changed,
the attacker diverts the read to the locations in memory where it
stored the original values. This attack can be detected by having
the ICE verification function access memory in pseudorandom pat-

� � � �� � �
���
� � � �� � �� � � �� � � �

PSfrag replacements

Challenge

ChecksumCode
Malicious code

Verifier Device

Program Counter

Figure 2: In this attack, the correct code resides at a different
memory location, and the attacker executes malicious code at
the correct memory location, computing the memory checksum
over the correct code.

� � � �	 	 	

� � �� � � �
���
�

� � �� � �� � �
� � �� � �� � �

PSfrag replacements
Challenge

ChecksumCode
Malicious code

Verifier Device

Program Counter

Figure 3: In this attack, the correct code resides at the correct
memory location, but the attacker executes malicious code at
a different memory location, computing the memory checksum
over the correct code.

tern. Thereby the attacker cannot predict in advance which mem-
ory accesses by the ICE verification function will read the memory
locations modified by the attacker. The attacker is then forced to
check every memory access by the ICE verification function. The
extra checks slow down the attacker’s checksum computation. This
approach is similar to the one in our earlier work on SWATT [19].

We use the result of the Coupon Collector’s Problem to guaran-
tee that the checksum code will read every memory location of the
ICE verification function and the executable with high probability,
despite the pseudo-random memory access pattern. If the size of
the ICE verification function and the executable is n words, the re-
sult of the Coupon Collector’s Problem states: if X is the number
of memory reads required to read each of the n words at least once,
then Pr[X > cn lnn]≤ n−c+1. Thus, after O(n lnn) memory reads,
each memory location is accessed at least once with high probabil-
ity.
Memory copy attacks. Since we only want to verify a small part
of the memory of the device, we are faced with two copy attacks:
either the correct code is copied to another location in memory and
malicious code is executing at the location of the correct code (Fig-
ure 2), or the correct code resides at the correct memory location
and the malicious code is executing at another location of mem-
ory (Figure 3). It is clear that we need to prevent both attacks to
have self-checksumming code. To prevent the first attack, we need
to ensure that the contents that we compute the checksum over are
fetched from the correct address locations in memory. To prevent
the second attack, we need to ensure that the program counter is
pointing to the correct memory addresses. A third attack is that
both the correct code and the malicious code are at different mem-
ory locations. It is clear that either of the countermeasures that
prevent the first or second copy attack also prevent the third attack.

To detect the two memory copy attacks, we use the program
counter and the data pointer as part of the data used to compute
the checksum. Either of the copy attacks requires the attacker to in-
corporate additional instructions into the ICE verification function
to simulate the correct values for the PC and the data pointer. These
additional instructions will slow down checksum computation.
Forging CPU state inputs. We mentioned earlier that setting up
the untampered execution environment is equivalent to ensuring
atomic execution of the executable. ICE guarantees atomic exe-
cution by setting up the corresponding CPU state and incorporat-

88

ing them into the checksum. An attacker may attempt to forge the
creation of the untampered execution environment by incorrectly
setting up the CPU state and then forging the correct CPU state
during checksum computation. We now describe this potential at-
tack in detail and argue why such an attack would fail.

The CPU state required for atomic execution varies depending
on the CPU architecture. In the following discussion, we will focus
on architecturally simple CPUs that are commonly employed on
sensor nodes. Such processors lack advanced architectural features
such as support for virtual memory, memory protections, or caches.
On such CPUs, atomicity of execution can be achieved by disabling
interrupts during execution. Since the CPUs under consideration do
not support exceptions, disabling interrupts ensures that no other
code can execute.

Interrupts are of two kinds: maskable and non-maskable. Set-
ting the interrupt-disable bit to the appropriate state disables
maskable interrupts. Non-maskable interrupts, however, cannot be
disabled. Therefore, in the presence of non-maskable interrupts,
we cannot guarantee execution atomicity of the executable. Instead
we relax our requirement of atomicity to state that only code that
has been verified by the ICE verification function be allowed to
execute during the execution of the executable. With this relaxed
requirement, we include a default handler for non-maskable inter-
rupts in the ICE verification function. This is a dummy handler
that simply executes an interrupt-return instruction to return
control to whatever code was executing when the non-maskable in-
terrupt occurred. The ICE verification function modifies the CPU’s
interrupt vector table so that the interrupt vectors for all the non-
maskable interrupts point to the dummy interrupt handler within
the ICE verification function. With this change, any non-maskable
interrupt that occurs during the execution of the executable will
cause control to be unconditionally returned to ICE.

By including the interrupt-disable bit and the CPU’s inter-
rupt vector table in the checksum, we ensure that the checksum is
correct only if these inputs are correct. If the attacker sets up (one
of) these CPU states incorrectly, the attacker will have to forge the
correct value during checksum computation thereby leading to a
time overhead.

4.2.2 Attacks to speed up Checksum Computation
The attacker may attempt to speed up checksum computation in

two ways: use a helper device or do it on the sensor node. The first
attack mentioned below attempts to speed the checksum computa-
tion on the sensor node. The second and the third attack try to use
helper devices.
Optimized implementation attack. The attacker may decrease
the execution time of the ICE verification function by optimizing
the code, which allows the attacker to use the time gained to forge
the checksum, without being detected. Similar to previous research
in this area [11,19], we need to show that the code cannot be further
optimized. We can use automated tools to either exhaustively find
the most efficient implementation [8], or to use theorem proving
techniques to show that a given code fragment is optimal [10]. In
any case, our goal is to keep the code exceedingly simple to facili-
tate manual inspection and the use of these tools.
Multiple colluding devices attack. Another way to speed up ex-
ecution is by leveraging multiple devices to compute the checksum
in parallel. Multiple devices may attempt to collude to compute
different ranges in the ICE verification function loop and combine
their results to get the final checksum. To prevent this attack, we
make the verification function non-parallelizable to force sequen-
tial execution.
Proxy attack. A malicious sensor node may attempt to forward
the ICE challenge to a proxy node with greater computing resources.
The proxy node has a copy of the correct memory contents of the
sensor node. Having greater computing resources, the proxy node

can compute the ICE checksum faster than the sensor node. The
time saved by a faster computation of the ICE checksum can be
used for communicating the ICE challenge from the sensor node
to the proxy and communicating the ICE checksum from the proxy
to the sensor node. This way the malicious sensor node can forge
the ICE checksum and the forgery will go undetected by the base
station. We call this attack the proxy attack.

We assume in this paper that all sensor nodes in the network
have identical computing resources and the attacker is not physi-
cally present during verification. Hence, the proxy will have to be
a node outside the network (e.g., a PC on the Internet). Any packets
sent by the sensor nodes to devices outside the network will have
to pass through the base station since the sensor nodes only have
short-range wireless links.

The base station prevents proxy attacks by blocking all network
packets from outside the sensor network during the process of ver-
ification. Hence, any sensor node that tries to use an external proxy
will be unable to receive the computed checksum from the proxy.

4.2.3 Impersonation Attacks
A malicious sensor node may attempt to have a legitimate sensor

node impersonate it in the ICE protocol by forwarding protocol
messages from the base station to the legitimate sensor node. Also,
a malicious sensor node may attempt to assume multiple identities
(Sybil attack).

To prevent such attacks, the base station needs an assurance that
the ICE response it receives comes from the sensor node the base
station is trying to verify. We achieve this property through a few
bytes of Read-only Memory (ROM) on every node. The ROM
stores the node ID of the node. The node ID is unique to each node
and since it is in a ROM the attacker cannot modify it, even when
the attacker compromises the node. The ICE verification function
uses the ROM-based node ID as an input to the checksum compu-
tation. By doing so, the attacker is forced to forge the node ID if
it wants to do an impersonation attack. To perform this forgery,
the attacker has to use a data substitution attack to insert a con-
ditional check. This check would divert the read to the ROM to
other memory location where the attacker has stored the node ID
of the node the attacker is trying to impersonate. Thereby, the at-
tacker’s checksum computation is slowed down. Hence, the base
station can detect impersonation attacks through the slowdown in
checksum computation.

4.3 Design of the ICE Verification Function
We now discuss how we design the ICE verification function to

implement the defenses we mentioned in the previous section.
Keyed checksum. The checksum computed by the device should
be a function of the challenge sent by the verifier to prevent pre-
computation and replay attacks. We could use a cryptographic
message authentication code (MAC), like HMAC [3] to generate
the checksum. However, MAC functions have much stronger prop-
erties than we require. MACs are designed to resist a MAC forgery
attack. In this attack, an attacker observes the MAC values for a
number of different inputs, all of which are computed using the
same MAC key. The attacker then tries to generate a MAC for an
unknown input, under the same key, using the input-MAC pairs it
has observed. In our setting, the verifier sends a random challenge
to the device along with each verification request. The device uses
the random challenge as the key to generate the memory finger-
print. Since the key changes every time, the MAC forgery attack is
not relevant in our setting.

We use a simple checksum function to generate a fingerprint of
memory. The checksum function uses the random challenge sent by
the verifier to seed a pseudorandom number generator (PRG) and
to initialize the checksum variable. The output of the PRG is incor-
porated into the checksum during each iteration of the checksum
function. Hence, the input used to compute the checksum changes

89

//Input: y number of iterations of the verification procedure
//Output: Checksum C
//Variables:
// [code start,code end]: verified memory area
// daddr: address of current memory access
// b: content at daddr
// x: value of T function
// l: loop counter
// SR: status (flags) register
for l = y to 0 do

//T function updates x where 0 < x < 216
x← x+(x2∨5) mod 216
//Compute random memory address using x
daddr = ((daddr⊕ x)∧MASK)+ code start
//Calculate checksum. j: current index into checksum vector.
C j ←C j +PC⊕mem[daddr]+ l⊕C j−1 + x⊕daddr+

C j−2⊕SR
C j ← rotate left(C j)
//update checksum index
j← (j +1) mod 10

end for

Figure 4: ICE Pseudocode.

with each verification request and so the final checksum returned
by the device will be a function of the verifier’s challenge.
Pseudo-random number generator. We use a 16-bit T-function
as the PRG [12]. A T-function is a bijection from n-bit words to
n-bit words. Certain T-functions also have the property that their
single cycle length is equal to 2n, where n is the size of the input
to the T-function in bits. The particular T-function we use in the
ICE verification function, x← x +(x2 ∨ 5) where ∨ is the bitwise
or operator, has this property.

In practice, we should use a family of T-functions because a T-
function starts repeating itself after it has generated all elements
in its range. Another option for a PRG would be the RC4 stream
cipher. However, T-functions are very efficient, and their code can
be easily shown to be optimal.
Preventing memory copy attacks. Figure 3 and Figure 2 illus-
trates the two memory copy attacks. In the first one, the attacker ex-
ecutes malicious code at the correct memory location, while com-
puting the checksum over the correct code residing elsewhere. This
could be implemented either by faking the data pointer used to read
memory, or displacing all memory reads by an offset. In the sec-
ond attack, the correct code resides at the correct memory location,
but the attacker executes malicious code elsewhere. This would re-
quire the attacker to forge the value of the program counter when
used as an input to the checksum. By incorporating the program
counter and data pointer into the checksum, such potential attacks
would result in extra computation, which would slow down check-
sum computation.
Strongly-ordered checksum function. The ICE verification func-
tion uses an alternate sequence of additions and XOR operations to
compute the checksum. This sequence of operations has the prop-
erty that the final value of checksum will be different with high
probability if the sequence of operations is altered in any way.
A strongly-ordered checksum function prevents the attacker from
computing the checksum out-of-order or in parallel. It also pre-
vents the attacker from removing operations from the checksum
function or replacing them with other operations in an attempt to
speed up checksum computation.
Non-parallelizable. In order to make the checksum function non-
parallelizable, we use the two preceding checksum values to com-
pute the current checksum value. Also, the PRG generates its cur-
rent output based on its last output.

4.4 Implementing ICE
This section describes our implementation of the ICE verifica-

tion function on the TI MSP430 micro-controller that is used on
the Telos rev.B motes.
Overview of the TI MSP430. The MSP430 is a 16-bit RISC CPU
that uses the von-Neumann architecture. It has 48KB of Flash
memory, 10KB of RAM, and uses a 8MHz clock. There are 16
16-bit general purpose registers, r0 through r15. Of these r0 is
the PC, r1 is the stack pointer, r2 is the status (flags) register, and
r3 is the constant generator. This leaves 12 registers available for
general purpose use by programs. The CPU also has a hardware
multiplier. The presence of the multiplier considerably speeds up
the computation of the T-function. However, the presence of a hard-
ware multiplier is not absolutely necessary for the ICE verification
function. In the absence of a hardware multiplier, the multiply op-
eration in the T-function can be simulated or the T-function can be
replaced by RC4, which does not require any multiply operations.
The interrupt-disable bit on the MSP430 is part of the status
register, r2. Also, the interrupt vector table resides in the top 32
bytes of memory.
Pseudocode. Figure 4 shows the pseudocode of the ICE verifica-
tion function. The ICE verification function iteratively computes a
160-bit checksum. The pseudocode is presented in a non-optimized
form to improve readability. It takes in a parameter y which is the
number of iterations the ICE verification function should perform
when computing the checksum.

The ICE verification function uses r13 to hold the loop counter,
which is initialized to y, r14 to hold the data pointer used to read
memory, and r15 to hold the current value of the T-function out-
put. This leaves 10 registers available, including the stack pointer.
The ICE verification function can use the stack pointer as a general
purpose register since it does not use the stack. To ensure that the
attacker does not have any free registers available the ICE verifica-
tion function uses all 10 registers to hold the checksum, resulting
in a 160-bit checksum value.

To efficiently compute the checksum that is held in 10 general
purpose registers, we unroll the ICE verification function loop 10
times. Each unrolled code block updates one of the registers hold-
ing the checksum. After unrolling the loop, an obvious optimiza-
tion is to decrement the loop counter by 10 at the very end of the
unrolled loop instead of performing it in every code block.

Each code block includes the memory word read, the PC, the
data pointer, the output of T-function, the loop counter, and the two
previously computed checksum values in the checksum. The code
blocks also include the status register in the checksum to check the
status of the interrupt-disable flag. The memory region con-
taining the interrupt vector table is also used as an input to compute
the checksum. Pseudo-random memory traversal is implemented
by xoring the current value of the T-function with the data pointer
and appropriately masking the result to ensure that the data pointer
falls within the memory region of interest.

The challenge sent by the verifier is 128 bits long. This chal-
lenge is used to initialize 8 of the 10 16-bit registers that hold the
checksum. The ninth and the tenth register are initialized to a value
computed by xoring the first four and last four 16-bit words of the
128-bit challenge. The 16-bit seed for the T-function is generated
by xoring together the eight 16-bit words that make up the 128-bit
challenge.
Assembly code. Figure 5 shows one code block of the unrolled
loop of the ICE verification function written in the assembly lan-
guage of MSP430. The code is manually optimized to ensure that
the attacker cannot find a more optimized implementation. The
code block consists of 17 assembly instructions and takes 32 CPU
cycles. Incorporating the PC into the checksum is made simple by
the fact that the PC can be treated as a general purpose register.
This property holds for most RISC CPUs.

90

Assembly Instruction Explanation

//T function updates x
mov r15, &MPY load x into first operand

of hardware multiplier
mov r15, &OP2 load x into second operand

of hardware multiplier
bis #0x05, &RESLO OR 5 into output of hardware

multiplier, which holds x2

add &RESLO, r15 x← x+(x2∨5) mod 2n

//modifies address daddr, based on x from T function
xor r14, r6 daddr← daddr⊕ x
and #0x1FF, r6 mask last few bits of daddr
add #ICE LOOP, r6 daddr← daddr + ICE LOOP
//reads memory at address daddr, and calculates checksum
add r0, r6 C j ←C j +PC
xor @r14, r6 C j ←C j⊕mem[daddr]
add r13, r6 C j ←C j + loopIndex
xor r5, r6 C j ←C j⊕C j−1
add r15, r6 C j ←C j + x (from T function)
xor r14, r6 C j ←C j⊕daddr
add r4, r6 C j ←C j +C j−2
xor SR, r6 C j ←C j⊕ status register
rla r6 C j ← rotate left[C j]
adc r6

Figure 5: ICE Assembly code

4.5 Results
In this section, we show the attacker’s overhead for the attacks

described in Section 4.2. The design of the checksum function only
allows the attacker to use the data substitution attack or the memory
copy attacks to forge the checksum. If the attacker uses any of the
other attacks, the final checksum will be wrong. We developed the
fastest implementation of both attacks and timed their execution.

Since the ICE verification function uses all 16 CPU registers,
the attacker does not have any more free registers. Therefore, the
attacker can only use immediate or memory operands in its code.
With this constraint, the two fastest implementations of the memory
copy attack are as follows. In the first method, the attacker replaces
all accesses to the PC with immediates. This allows the attacker
to keep an unmodified code image at the expected location while
executing a modified ICE function elsewhere. This modified ICE
function would forge the PC by using an immediate instead of the
actual PC. In the second method, the attacker displaces all memory
reads by a fixed constant. This allows the attacker to execute a
modified ICE function at the expected location, while redirecting
all memory reads to an unmodified code image placed at a constant
offset.

Both memory copy attacks incur a one-cycle overhead per code
block. On the MSP430 architecture, a register-to-register opera-
tion takes one cycle, while an immediate-to-register operation takes
two cycles. Thus, in the first attack, the attacker incurs a one-cycle
overhead every time it forges the PC value with an immediate. An-
other feature of the MSP430 architecture is that memory reads with
displacement addressing require three cycles, while direct memory
reads require two cycles. By replacing direct memory access with
displaced reads, the second memory copy attack also incurs a one-
cycle penalty per code block. Since each code block consists of
32 CPU cycles, a memory copy attack would have an overhead of
1/32, of 3.1%. We implemented this attack and timed the execu-
tion, both on the node (local timing), and by the base station (one
hop RTT).

In the data substitution attack, the attacker needs to check every

memory read by inserting an if statement. This translates into a
compare instruction and a jump instruction. The compare instruc-
tion uses an immediate or memory operand and hence requires at
least 2 cycles to execute. The jump instruction also takes 2 cycles
to execute. Thus, this attack suffers an overhead of 4/32, or 12.5%.
Selecting number of loop iterations. The base station and the
node communicate over a network link. The attacker may attempt
to reduce the latency of network communication to gain time to
forge the checksum. The theoretically best attacker has zero net-
work latency. Therefore, if we estimate a worst-case bound on the
network latency, then we can always detect the existence of an at-
tacker if its time overhead to forge the checksum is greater than the
worst-case network latency.

Estimating the worst-case network latency in a multi-hop sensor
network is not easy. In Section 5.2 we develop a technique that
allows the checksum computation time of a node to be always ob-
served by a node that is one-hop away. Therefore, we only need to
estimate the worst-case one-hop network latency. However, even
the one-hop latency is not deterministic in a wireless environment
where multiple nodes contend for the radio channel. To make the
one hop network latency deterministic, the node computing the ICE
checksum is given exclusive access to the radio channel. Now, the
worst-case one hop network latency can be predetermined.

The attacker’s overhead to forge the checksum is directly pro-
portional to the number of iterations of ICE verification function.
So, in our experiments we choose the number of iterations so that
the attacker’s overhead for its fastest attack is still higher than the
worst-case one-hop network latency of the sensor network. The
time allowed to compute the checksum is set to be the expected
computation time plus the worst-case one-hop network latency. If
the perceived execution time by the verifier is higher than the thresh-
old, the device executing the ICE verification function is assumed
to be compromised. A false negative is the case of a device verify-
ing correctly even though it is compromised, while a false positive
occurs when a legitimate device is classified to be malicious. In this
setting, false negatives are impossible since a malicious ICE veri-
fication function would not be able to forge the checksum within
the expected checksum computing time. However, if the actual la-
tency of a legitimate packet was higher than the worst-case one-hop
latency we allow for, a false positive would occur.

The Telos motes have a radio interface that communicates at 250
Kbps. The lowest overhead attack for the attacker is the memory
copy attack, which has a 3% attacker overhead. The worst-case
one-hop communication latency between two nodes was measured
by having them continually exchange packets over a period of time
and monitoring for the maximum latency experienced, which was
51ms. Based on these data, we choose the number of iterations to
be 40,000.
Experimental setup. There are two Telos motes within direct
communication range, one acting as the base station, and one acting
as the sensor node running the ICE verification function. We imple-
mented the ICE protocol between these two nodes on TinyOS. We
implemented two versions of the ICE verification function: a le-
gitimate function and a malicious function employing the memory
copy attack. Execution timing measurements were taken by both
nodes, and the experiment was repeated for the legitimate and the
malicious verification functions. Hence, Figure 6 reports four sets
of timing measurements. Timing measurements taken by the base
station is the sum of the execution time of the ICE verification func-
tion and the one-hop network RTT, while timing measurements by
the node being verified only consist of the running time of the ICE
verification function. The expected time to compute the checksum
was set to be the execution time of the legitimate ICE verification
function plus maximum one-hop network latency (51ms). As our
results show, the base station that is one hop away from the node
was always be able to observe the attacker’s time overhead.

91

0 5 10 15 20 25
Sample

2.8

2.85

2.9

2.95

3

3.05

3.1

Ti
m

e
(s

)
Adversary’s Runtime and RTT
Adversary’s Runtime
Legitimate Code’s Runtime and Network RTT
Legitimate Code’s Runtime
Expected Time to Compute Checksum

Figure 6: Results of ICE and the fastest implementation of the
memory copy attack, running 40,000 iterations.

B→ A : 〈ICE Challenge〉
B : T1 = Current time
A : Compute ICE checksum over memory region

containing the ROM, the ICE verification function,
and the SCUBA executable

A→ B : 〈ICE checksum〉
B : T2 = Current time

Verify (T2−T1)≤ Time allowed to compute
ICE checksum
Verify ICE checksum from node by recomputing it

A→ B : 〈Hash of code memory〉
B : Use hash from node to determine

if node’s code memory is modified
Prepare code patches for sensor node

B→ A : 〈Code patches〉
A : Apply patches

Figure 7: SCUBA Protocol between the base station B and a
sensor node A.

5. PROTOCOL FOR SECURE CODE UP-
DATES

In this section we describe how ICE can be used to construct
the SCUBA protocol. We start off with a high level description of
the SCUBA protocol between the base station and a sensor node
separated by one network hop. Appendix A gives a more detailed
description of the protocol. Then, we discuss how the SCUBA pro-
tocol can be extended to work with sensor nodes that are multi-
ple hops away from the base station. Finally, we discuss how the
SCUBA protocol can be used to undo modifications made by the
attacker to the data on the sensor nodes.

5.1 SCUBA Protocol
The purpose of the SCUBA protocol is to provide a method for

the base station to repair a compromised sensor node through code
updates. The compromised node could contain malicious code that
will interfere with the code update process. The SCUBA protocol
will either blacklist the node or repair it. To repair a node, the base
station sends a code update to undo any changes made to software
on the node by the attacker.

Figure 7 shows a simplified version of the SCUBA protocol. The
base station invokes the ICE verification function on the sensor
node by sending a challenge. The ICE verification function com-
putes a checksum over the memory region containing itself, the
SCUBA protocol executable, and the ROM containing the base sta-
tion’s public key and the sensor node’s node ID. If the base station
receives the correct checksum from the sensor node within the ex-

pected time, the base station obtains the guarantee that the SCUBA
protocol executable on the sensor node will execute untampered.
In this case the base station will repair the node’s software via code
updates. If the checksum received by the base station is incorrect,
or it takes too long to arrive, the base station presumes that mali-
cious code on the node is interfering with the code update process
and blacklists the node.

After computing and returning the checksum, the ICE verifica-
tion function invokes the hash function within the SCUBA proto-
col executable. The hash function sends the hash of the node’s
code memory to the base station. The base station compares the
hash returned by the sensor node with the correct hash value of the
code memory to determine if there have been changes to the code
memory contents of the sensor node. The base station can also
pinpoint exactly which locations in the memory of a sensor node
have been modified by the attacker by asking the sensor node to
compute hashes of different regions of its memory. Once the modi-
fied locations in the memory of a sensor node have been identified,
the base station can send memory updates for exactly those mem-
ory locations that have been modified by the attacker. Thereby the
amount of data sent from the base station to the sensor node will be
minimized.

The base station and the sensor node need to authenticate the
protocol packets they receive. The SCUBA protocol uses the Guy-
Fawkes protocol to set up a two-way authenticated channel between
the base station and the node [1]. To use the Guy-Fawkes protocol,
both the base station and node generate short hash chains. How-
ever, before the hash chains can be used, both the base station and
the node need to authenticate the first element of each other’s hash
chain. The base station sends the first element of its hash chain
along with the digital signature of the element generated using its
private key to the node. The node uses the base station’s public key
in its ROM to verify the digital signature. In this way, the node can
authenticate the first element of the base station’s hash chain.

To enable the base station to authenticate the first element of
the node’s hash chain, we make use of the fact that only the node
with the correct memory layout will be able to generate the ICE
checksum within the expected time. Since the memory content that
is checked includes the node’s node ID (which is immutable) only
the node being verified (one with the correct node ID) will be able
to generate the checksum within the expected time. After it finishes
computing the checksum, the node sends the first member of its
hash chain and a MAC of this element to the base station. The
MAC is computed using the ICE checksum as the key. The base
station independently generates the ICE checksum and can verify
the MAC sent by the sensor node. If the MAC of the hash chain
member sent by the node verifies correctly at the base station and
the element and the MAC are received within the expected time, the
base station is guaranteed that the hash chain element came from
the correct node.

Appendix A presents the full SCUBA protocol, which shows
how a two-way authenticated channel is established between the
base station and the node.

5.2 Expanding Ring Method
The protocol description above deals with a sensor node that is

one hop away from the base station. For a node that is multiple
hops away from the base station, the time between sending an ICE
challenge and getting a response can vary considerably due to vari-
ations in network latency. Since the time taken by a node to com-
pute the ICE checksum has to be measured accurately to verify the
correctness of the ICE checksum, we need a way to minimize the
network latency variance for nodes that are multiple hops away.

We propose the following expanding ring method to minimize
the network latency variance. The intuition behind our method is
that if the checksum computation time of a node is always mea-
sured by a neighboring node, then the network latency is always
that of a single hop. To achieve this condition, the base station first

92

verifies nodes that are one network hop away from it. In this case,
the base station can directly time the ICE checksum computation.
The nodes that are one network hop away are then asked by the
base station to measure the time taken by their neighbors to com-
pute the checksum. In this manner, the ICE verification spreads out
from the base station like an expanding ring.

To verify a node that is multiple hops away, the base station first
selects a verified neighbor of the node. The base station then sends
an ICE challenge to the neighbor. The challenge is encrypted using
the key that the neighbor shares with the base station. Encrypt-
ing the challenge prevents a colluding malicious node along the
path between the base station and a neighbor from receiving the
challenge before the node being verified. The malicious node may
attempt to use the time saved by receiving the challenge earlier to
forge the ICE checksum. The neighbor decrypts the challenge, is-
sues it to the node being verified, and times the checksum com-
putation. Upon receiving the checksum, the neighbor constructs a
result packet containing the checksum and the time taken to com-
pute the checksum. The neighbor computes a MAC of the result
packet computed using the key it shares with the base station. The
neighbor then sends the result packet to the base station along with
the MAC. The base station uses the MAC to verify that the result
packet it receives is authentic. The base station then verifies the
correctness of the checksum in the result packet and the time taken
to compute the checksum.

There are two issues in the expanding ring method that need to
be addressed. One, the key which the neighbor shares with the base
station needs to changed as part of the verification of the neighbor
since the attacker might have compromised the neighbor and read
out its key. Two, the neighbor may get compromised after it is
verified but before it is asked by the base station to verify other
nodes.

The first issue is one of key establishment: how can we establish
a key between the base station and a node without relying the pre-
existence of shared secrets between them? The untampered code
execution mechanism provided by ICE can be used to perform this
task. We do not give the details here since it is out of the scope of
this paper. A preliminary version of our protocol for key establish-
ment based on ICE is available [2]. A forthcoming paper discusses
a better version of the protocol.

To prevent the neighbor from getting compromised in the time
between its verification and the time it is asked to verify other
nodes, the verified nodes do not exit the SCUBA protocol exe-
cutable to resume normal processing until the entire network has
been verified by the base station. Due to its small code size, the
SCUBA executable can be subjected to formal verification and man-
ual audit to verify that it does not contain known software vulner-
abilities in its code. Since any verified node continues to execute
the SCUBA executable till it is explicitly asked to exit by the base
station, the base station is assured that none of the verified nodes
will get compromised till the verification process is complete. At
the end of the verification process, the base station broadcasts an
exit message to all nodes. Upon receiving this message, the nodes
exit the SCUBA executable and resume normal processing.

5.3 Repairing Data
So far, we have discussed how the SCUBA protocol can be used

to undo changes made by the attacker to the code in a sensor node.
However, it is possible that the attacker modifies data present on
the node in addition to the code. Then to repair a node fully, the
base station would need to undo changes to the data as well.

The SCUBA protocol can easily be extended to address this.
Data can be classified as static data and dynamic data. Static data
is data that never changes. The base station knows the correct
contents of the memory region on the node containing static data.
Therefore, the method used to undo changes to static data is iden-
tical to the method used for code.

Dynamic data is data that is generated and modified by programs

running on the node. Therefore, the base station cannot know the
correct contents of memory regions on the node that contain dy-
namic data. Therefore, the base station asks the SCUBA protocol
executable on the sensor node to reset the node after updating the
node’s code and static data. This way, the node starts executing
from a clean state where all dynamic data is cleared to zero. The
only caveat to this approach is that software on the node might use
both volatile and non-volatile memory to store dynamic data. Since
non-volatile memory is not cleared on reset, the SCUBA protocol
executable must clear all dynamic data in non-volatile memory be-
fore resetting the node.

6. RELATED WORK
In this section, we review research related to software updates

in sensor networks. We already discussed research in the areas of
untampered code execution and software-based attestation in Sec-
tion 3.

In the area of sensor network software updates, extensive re-
search had been conducted in the context of efficiency and reliabil-
ity, but assumes a trustworthy environment [9,13,14,21]. Deng et al.
attempted to secure code updates by using Merkle hash trees and
hash chains to authenticate the code distribution [4]. By leverag-
ing authenticated streams, Dutta et al. secured Deluge, the de facto
TinyOS network programming system [7]. However, these proto-
cols only solve one half of the secure code update problem: how
can the receiver authenticate code updates from the base station.
In this paper, we solve the other half: how can the sender verify
that the receiver indeed applied the code update. Combining the
SCUBA with above approaches provides a complete solution for
securing code updates.

7. CONCLUSION
We present SCUBA, a protocol that enables secure detection and

recovery from sensor node compromise. To the best of our knowl-
edge, this is the first protocol to deal with recovering sensor nodes
after compromise. Our code update protocol can securely update
the code of a sensor node, offering a strong guarantee that the node
has been correctly patched, or detect when the patch failed.

Our protocol is based on ICE (Indisputable Code Execution), a
primitive that can guarantee untampered execution of code even on
a compromised node. ICE is a novel primitive in sensor networks,
and applying it to secure code updates is just one of its many appli-
cations. The utility of ICE is only limited by the program verified
as the target executable, and we envision that ICE would be a useful
tool to develop other secure sensor network protocols.

There are some research issues outstanding in our current work.
The assumption that attacker’s hardware devices are not present in
the sensor network during the repair is a strong one and we are
working towards providing similar properties for a relaxed attacker
model. Also, the ICE verification function needs to be subjected to
further cryptanalysis.

Our implementation in off-the shelf sensor nodes shows that our
techniques are practical on current sensor nodes, without requiring
specialized hardware. We are excited about other applications that
our techniques may enable, which we will explore in our future
work.

8. REFERENCES
[1] R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. M anifavas,

and R. Needham. A new family of authentication protocols.
ACM Operating Systems Review, 32(4):9–20, October 1998.

[2] A.Seshadri, M.Luk, A.Perrig, L. van Doorn, and P.Khosla.
Using FIRE and ICE for detecting and recovering
compromised nodes in sensor networks. Technical Report
CMU-CS-04-187, School of Computer Science, Carnegie
Mellon University, December 2004.

93

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash
functions for message authentication. In Advances in
Cryptology - Crypto, pages 1–15, 1996.

[4] J. Deng, R. Han, and S. Mishra. Secure code distribution in
dynamically programmable wireless sensor networks. In
Proceedings in International Conference on Information
Processing in Sensor Networks (IPSN 2006), 2006.

[5] J. Douceur. The Sybil attack. In Proceedings of Workshop on
Peer-to-Peer Systems (IPTPS), March 2002.

[6] D.Spinellis. Reflection as a mechanism for software integrity
verification. ACM Transactions on Information and System
Security, 3(1):51–62, February 2000.

[7] P. Dutta, J. Hui, D. Chu, and D. Culler. Securing the deluge
network programming system. In Proceedings in
International Conference on Information Processing in
Sensor Networks (IPSN), 2006.

[8] Free Software Foundation. superopt - finds the shortest
instruction sequence for a given function.
http://www.gnu.org/directory/devel/compilers/
superopt.html.

[9] J. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
Proceedings of ACM Conference on Embedded Networked
Sensor Systems (SenSys), November 2004.

[10] R. Joshi, G. Nelson, and K. Randall. Denali: a goal-directed
superoptimizer. In Proceedings of ACM Conference on
Programming Language Design and Implementation (PLDI),
pages 304–314, 2002.

[11] R. Kennell and L. Jamieson. Establishing the genuinity of
remote computer systems. In Proceedings of USENIX
Security Symposium, August 2003.

[12] A. Klimov and A. Shamir. New cryptographic primitives
based on multiword t-functions. In Fast Software Encryption,
February 2004.

[13] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler. The emergence of
networking abstractions and techniques in TinyOS. In
Proceedings of Symposium on Networked Systems Design
and Implementation (NSDI), March 2004.

[14] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. In Proceedings of
Symposium on Networked Systems Design and
Implementation (NSDI), March 2004.

[15] D. Malan, M. Welsh, and M. Smith. A public-key
infrastructure for key distribution in TinyOS based on elliptic
curve cryptography. In Proceedings of IEEE Conference on
Sensor and Ad hoc Communications and Networks
(SECON), October 2004.

[16] Moteiv Corp. Tmote Sky: Low Power Wireless Sensor
Module, June 2006.

[17] M.Shaneck, K.Mahadevan, V.Kher, and Y.Kim. Remote
software-based attestation for wireless sensors. In ESAS,
pages 27–41, 2005.

[18] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar.
SPINS: Security protocols for sensor networks. In
Proceedings of Conference on Mobile Computing and
Networks (MobiCom), July 2001.

[19] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
SWATT: Software-based attestation for embedded devices.
In Proceedings of the IEEE Symposium on Security and
Privacy, May 2004.

[20] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig,
Leendert van Doorn, and Pradeep Khosla. Pioneer: Verifying
integrity and guaranteeing execution of code on legacy
platforms. In Proceedings of ACM Symposium on Operating
Systems Principles (SOSP), pages 1–15, October 2005.

[21] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code
update mechanism for wireless sensor networks. Technical
Report CENS-TR-30, UCLA-CENS, November 2003.

[22] T.Park and K.Shin. Soft tamper-proofing via program
integrity verification in wireless sensor networks. IEEE
Transactions on Mobile Computing, 4(3), May/June 2005.

[23] C. Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ: A
reliable transport protocol for wireless sensor networks. In
Proceedings of ACM Workshop on Wireless Sensor Networks
and Applications (WSNA), September 2002.

APPENDIX
A. SCUBA PROTOCOL

Figure 8 shows the protocol that is used by the base station B for
verifying code integrity and sending code updates to a node A. For
simplicity, the base station and the sensor node are one network
hop away from each other. The base station has a public/private
key pair, denoted in the protocol by KB and K−1

B , respectively.
The SCUBA protocol uses the Guy-Fawkes protocol [1] to estab-

lish a two-way authenticated communication channel between the
base station B and sensor node A. The node generates its hash chain
as a function of the ICE checksum. This prevents a malicious node
from saving time to forge the ICE checksum by pre-computing the
hash chain. The expected memory region consists of the memory
region containing the ICE verification function, the SCUBA proto-
col code, the first member of the base station’s Guy Fawkes hash
chain (h0 in Figure 8), and the ROM.

B : h4
R
←{0,1}128

Generate one-way hash chain h3 = F(h4),
h2 = F(h3),h1 = F(h2),h0 = F(h1)

B→ A : 〈h0,{h0}K−1
B
〉

A : Verify signature on h0 using base station’s
public key from ROM

B : Wait for node to verify signature on h0
B : T1 = Current time
B→ A : 〈h1〉
A : Verify h0 = F(h1)

Compute ICE checksum over expected memory
region using h1 as challenge
C = ICE checksum
r R
←{0,1}128

Generate one-way hash chain d2 = F(C||r),
d1 = F(d2),d0 = F(d1)

A→ B : 〈d0,MACC(d0)〉
B : T2 = Current time

Verify (T2−T1)≤ Allowed time
Verify MAC of d0 by recomputing ICE checksum.
Abort if incorrect.

B→ A : 〈h2〉
A : Verify base station’s acknowledgment

h0 = F(F(h2))
Compute hash of code memory
Hmem = Hash of code memory

A→ B : 〈Hmem,MACd1(Hmem)〉

B→ A : 〈h3〉
A : Verify base station’s acknowledgment

h2 = F(h3)
A→ B : 〈d1〉
B : Verify authenticity of d1

d0 = F(d1)
Verify MAC of Hmem returned by A
If Hmem sent by A equals known good value then stop

B→ A : 〈codepatch,MACh4(codepatch)〉

A→ B : 〈r〉
B : Compute d2 = F(C||r)

Verify, d1 = F(d2)
B→ A : 〈h4〉
A : Verify, h3 = F(h4)

Compute and verify MACh4(codepatch) using h4
Apply patch

Figure 8: The full SCUBA protocol. B is the base station, A
is a potentially compromised node. F is a cryptographic hash
function.

94

